SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again Supplementary material

Errata

After submission, we realized that one value in the detections scores graph for the multi-object dataset (Figure 7, left) was still from an earlier, erroneous run. Specifically, the correct recall for threshold 0 is 0.923 instead of 0.982. We apologize for this mistake but believe that it does not diminish the overall novelty and results of our work.

1. Object-wise detection scores

We present the detection score graphs for each object of the first two datasets in Figures 1 and 2 from which we determined the best object-wise threshold. For reproducibility, we list them in Tables 1 and 2.

Camera	Coffee	Joystick	Juice	Milk	Shampoo
0.55	0.35	0.5	0.25	0.3	0.45

Table 1: Object-wise thresholds for the Tejani dataset.

Figure 1: Plotting the detection scores for each object on the Tejani dataset for a varying threshold.

ape	bvise	cam	can	cat	driller	duck	box	glue	holep	iron	lamp	phone
0.5	0.15	0.2	0.75	0.35	0.25	0.25	0.25	0.4	0.4	0.3	0.55	0.35

Table 2: Object-wise thresholds for the LineMOD dataset.

Figure 2: Plotting the detection scores for each object on the LineMOD dataset for a varying threshold.

2. Detailed pose errors for the LineMOD dataset

	ape	bvise	cam	can	cat	driller	duck	box	glue	holep	iron	lamp	phone
IoU-2D	0.99	1.00	0.99	1.0	0.99	0.99	0.98	0.99	0.98	0.99	0.99	0.99	1.00
IoU-3D	0.96	0.98	0.98	0.99	0.95	0.95	0.95	0.98	0.89	0.97	0.97	0.98	0.93
VSS-2D	0.73	0.67	0.73	0.75	0.67	0.66	0.71	0.78	0.72	0.70	0.74	0.66	0.72
VSS-3D	0.84	0.88	0.90	0.86	0.81	0.84	0.83	0.88	0.75	0.77	0.85	0.84	0.81
ADD-2D	0.65	0.80	0.78	0.86	0.70	0.73	0.66	1.00	1.00	0.49	0.78	0.73	0.79
ADD-3D	0.85	0.94	0.94	0.94	0.86	0.85	0.82	1.00	1.00	0.73	0.95	0.87	0.87

Table 3: Object-wise pose errors for the LineMOD dataset.

3. Error development for different loss term weights

We plot the average error on a synthetic validation set. While the accuracies for class, viewpoint and in-plane rotations increase, the networks converge at different levels. We also plot the more important mean angular deviation for viewpoint and in-plane rotation since this is usually the expected error of the pooled hypotheses before refinement.

Figure 3: Development of training error on a synthetic validation set.

Figure 4: Qualitative results on the LineMOD dataset. From left to right: 2D prediction, hypothesis pool, result after 2D refinement, result after 3D refinement.

Figure 5: Qualitative results on the LineMOD dataset. From left to right: 2D prediction, hypothesis pool, result after 2D refinement, result after 3D refinement.

Figure 6: Qualitative results on the multi-object dataset. From left to right: 2D prediction, hypothesis pool, result after 2D refinement, result after 3D refinement.

Figure 7: Qualitative results on the Tejani dataset. From left to right: 2D prediction, hypothesis pool, result after 2D refinement, result after 3D refinement.